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1. Introduction

The predictIon capability of a turbulence model depends on how effec—

tively one can prescribe the Reynolds stress distribution in closing the system

of equations. The simplest and most widely used has been the Boussinesq

treatment of the Reynolds stresses. As is now well known, Boussinesq hypo-

thesis holds only when the strain rates are fairly small. The main reason

being that by construction the Boussinesq formula implies that the principal

axes of the Reynolds stress tensor are parallel to the principal axes of the

strain rate tensor so that any change in the strain rate is directly felt in

the stresses. This instantaneous change of the Reynolds stresses with

the strain rates Is not supported by the experimental observations, because

the Reynolds stresses being due to the vorticity fluctuations require some

time to adjust to the new strain rates. To overcome these short comings,

one must either abandon the Boussinesq hypothesis altogether and solve the six

Reynolds transport equations which is costly In terms of computer time or

improve upon the hypothesis itself.

In this pape r we follow a recent analysis of RodI1 to constflict an im—

proved second—ordcr version of the Boussinesq hypothesis. An algebraic rela-

tion for the turbulent stresses has been obtained throu~zh a consideration of

the transport equations of the Reynolds stresses. Consequentl~’, the resulting

relation has the necessary influence of the convective and diffusive trans-

port effec ts of a turbul ence stress field.
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2. Analysis

The transport equations of the Reynolds stresses (_u~u~)and the equation

of turbulence energy (e = ~ u1
u~) for an incompressible flow respectively are

dt
11 = P~~ + Q~ + - C

jj  
= u

1
U~ (1)

• 
f~~

= P + D _ c  • ( 2)

where is the substantive derivative based on the mean velocity components

U
1

; P~~, D1., c~ . respectively are the production, diffusion and dissipation

of the Reynolds stresses, Q .. is the pressure—strain correlation, while P,

D and c respectively are the production, diffusion and dissipation of the

turbulence energy . In this paper we have utilized the modeling of the terms

Qjf D13, c~~ and D as repo rted in ref erences 1 and 2 , which on using the

summation convention on repeated indices are

= 
~~~~ 

~~~~ : ~~~~ 
+ y ~

2
~ 

~i j  
— P..) (3)

D . = —p— (v~ —u- + -
~~~~

-- 
~
- (4)

ii ax~ ~~
X

k 
C k~c ~X .

2 .
C ..  = — C ~~. .
ij  3 ij

— c e  —3 ~e sD = —  ( v — + — - - -— T —) (6)3Xk 3x,~ C k~. 3x

where c1, y and c are emp ir jca l  cons tant s , a~ d ‘ the k i n em a t i c  v isc os i ty .

1~ ie t c r n s  P . ., p end c are
13 . 

~U . 313 .
P - (t —i + 

.
, 

~~~~~~~

• i j  1k 
~

X..
K 

jk  ~~~~~ . . 
~~~~~~~~~~~ - — - - (7 )

( ; )
‘.

.. ii k~ .
U

. (~~~~)

I i~t rod t id  i the  n o t a t  ion  I ~~‘.

(10)
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and arra nging terms in Di.. we have

D
1~ 

V~ L (i_ i) +v.?- ~ + DT . .

c ~
) 2 

. C —

+ .
~

___-
{ 

~ t~~~
2 
~._ i )+_ .~. T

kT ~~ 3X
k 

(11)

Introd ucing (11) , the identity

dt dT.. —

i J _ ;  1
~~+ T  ~~dt dc iJ dt

and Eq. (2) in Eq. (1) and neglecting the derivatives of T1. in comparison

with the other terms, we obtain

T~3
(P—C) = P~ . + Q1~ 

— C
1~ (12)

On substituting (3) and (5) in (12) we obtain

4 d
~~ 

+ y (P1./c — 4 d~~ P/ c)/ ( d 1 + P / C )  (13)

where y l — y a n d d1 c1
—l

We now introduce the following notation
____ 

3U .
2 1 1 10 W t ) . N

• 2 i i
3 .

where 8 is the v o r t i c it y — d e n s i ty  and is the f l uc tua t i ng  vor tic i ty  compo—

nent. It follows directly from the Kolrnogorov—Saffman equation of energy

(Ref. 3) that the dissipation of energy C is given by

e = e  (15)

t’~ lng (14) and (15) in (7) and (8 ) we get

= _ (Tjk t
jk + T

ik 
MIk

) (16)

P/c = _Tk. Ni< : 
1:17)

if we now substitute (16) and (17) in (13) then we get a system of

non] i near  simu] tancous algebraic equations for the determination of T . .

l~ di 1 in his derivation did not use the expansion (17), hut retained P/c

a l~~raiae ti~r and solved (13) for • Since P/t c on t a l  us all T
1~ 

‘s,

‘“ t o  low an appr o.icli di I ft•  r en t  f rom Rod I , wlii cli I n t lie first place estab i I —

~ 
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shes the validity of the Boussinesq hypothesis , and in the second place

yields an improved algebraic relation for T1~
.

Equation (13) can be written in various iterative forms, however , the

following form is chosen because It yields various approximations in a direct

fashion.

d ~~~~~~ - T T (n)1 13 ij  k2.

= 4 ~.~~(d1 — T
k~~~ 

M
k~~

) + y (—T
1~~~ 

M ik — ~~~~ Mik + 4 ~~~

.. T~~~”~ M.
j(

) (18)

where n is the iteration index. -

For the zeroeth approximation we take

T ~~ 
2

ij 3~~1j

and by using the continuity equation M~ . = 0, we get

T 
(1) 2 

— 
2~~ 

• + N . • )  (19)
13 3 ij  o 13 31

where

2 
2?

a = constant . (20)
1

Equation (19) is the usual Boussinesq formulat ion which has also been

used among others by Kolmogorov4 and Safftnan3. It is only a first approxi-

mation and is expected to hold in situations where the mean flow is not chang-

ing rapidly.

To obtain the second approixination , we introduce (19) in (18) and neglect

terms of the third—order in N. . to have
13

(“ 2.1
• •

‘ = — — ct ~ (M + ~I )
3 1j C ij ji

+ .
~~

.:t 4
F ( M .k + >

~ki~~~jk  + 
~

1
jk 

+ Mkj
)M

Ik 
— 4 ~~~~(M~~ + N k )Mk; 1 (21)

.~~:Ueu ~.!l) provides the second approximation to the fleynolds stresses :1r.~i

&‘ : :‘~~~~~~~~ to hold fron 1c~ to modera te  v ar i a t i o na  of the strei:~ rates.

a philosophically differenc approach Saffman3 has also

F .~ ;‘,~ l .n~ cxpr t ~~~;ien  similar to (21) which  in our n ot  at  ion is

_ _  4 ~~~~~~ - - - -
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T 
(2) 2 . 

— 
2 C4 . + M . ) +

ij I Ij 3.j j i
+ .

~~ ~~~1k 
+ Mkj) M

ik 
+ (M

ik 
+ M

k j
)M

ik

— 

{ ~~jk 
+ 

~
l
kj

)M
ki + (M + ‘11k~~ kj } 

(22)

where u and A are constants. Comparing (21) and (22) we find that though both

are in dimensional agreement , they diffel in their last terms. It must be noted

that (21) is a consequence of the complete Navier—Stokes equations while

(22) is an attempt at finding a relaxation model to overcome the diffici—

• encies of the f i r s t  approximation.

A comparison of (21) and (.~2) yi~1ds the values of the constant Zz aD~-ear~ r-~’

in (21). Thus we have

The value 
~~~

= 0.3 has been used by Saffman3 and also by Pope and 1~h1te—

law5, but from (20) we find that the value = 0.3 is ~.ot consistent wit h t~ e

values = 0.4 and d
1 

= 0.5 as proposed in Ref. 2. However , if we take

the value d = 1.86 (-
~~ 

— 1) as mentioned by Rotta 6 an~ • - 0 .3  then• 1 .7  o
0.33, which is near to the value used by Saffnan . For the sake of

def initeness we therefore select the value 
~ 

-
~~ 0.3 in Eq. (21).

For two—dimensiona l mean flow Eq. (21) yields the fc ’l lawing  express ions

for ~~ t k~ normal and shear stresses:

C’) (1) 4- 
= T~~ + a0 [ 2 ~•lj 1 + 3(~t12 + 

~2l~~
1l2 — (N 1, + “21~ ~ (23a)

C’) (-1) 4 ~‘= T 2., + 

~~ 
+ 3(N 12 + “21~~ 21 

— 

~~12 ± ~-:~~~r ]  (23 b )

~33 - ~z 4 ~ij ~ + (N 12 + ~• , ) # J  (23c)

4 T , 
(2) 

T12~
’
~ - 3.~~~N 1 (N ~ - (23d )

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
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On the other hand Saffm~u’s equations (22) yIelds

= T11~’~ + A ( M 12 + H21
) (H12 

— H11
) (24a)

T22~
2
~ = T22~’~ - A ( M 12 + M21

)~~112 
- N21) (24b )

T33~
2
~ = T33~

0
~ (24c)

= T12~~~ — 2AM 11
(M12 

— M21
) (24d)

where A is an emperical constant. Thus though the shear stresses, Eqs. (23d)

and (24d) ,havc the same distributions , the normal stresses, Eqs. (23a—c) and

Eqs. (24a—c), have entirely different distributions .

In the wall region N11 = 
~

1
22 

= M21~ 0 and

N12

so that  Eqs. (23) become
(2) 2

— -~ = 2a (25a)

T22~
2
~ — 4 = _ e

o~ (25b)

- 4 = — e~~ 
- 

(25c) 
-

T (2) = _  ~ (25d)12 o

Equations (24) become

— 4 = A/ e 2 (26 a)

T ‘ — = — A / c ’  (~~~b)3 a

T (2) 2 (26c)33 3

T (2) 
= —

~~~ 
(2 6z ~)

0

now tak~~ A .02 to  ~~j t~~h t h e  t l i r ~~ no r n i l  st resses w i t h  the ~~‘e:  —

nental d a t a  wh ic h roug h l y  ar e  i n  t z ~e ratio ~ : 2 : 3 .  ~ur:e ri  cal v i ]  ucs bas .d  ea

(25) and (26) and t h e  expcr i~ ic n t a 1  va lue s  as quo t e d  in I~c f .  7 are  t a b u l a t ed

6 
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Table 1 Comparison of the Near-~Wa11 Data

Present (~~0.3) Prcsent(cx=0.34) Saffman 3 Reference 7

T
11~

2
~ — 4 0.18 0.23 0.22 0.32

— 4 —0.09 —0.12 —0.22 —0.18

— 4 —0.09 —0.12 0.0 —0.10

T12
1:2
~ —0.30 —0.34 —0.30 —0.34

A comparison of values in Table 1 shows that  cx =0.34 in the present model

may be more suitable than cx0=0.3. However, any adjustment of the constant

a or the actual  predic t ion capability of the proposed second—order algebraic

relation (21) can be ascer ta ined only a f t e r  it has been used in the calcula-

tion of various turbulen t flows.

Based on the works of Launder et a1
2 
and on the most recent review by

Reynold s8 it is possible to establish in advance the limitations of the second

approximation, viz. Eq. (21). For example , it ~nay be observed that in the wall

region the normal stresses ~~~ and T
3~
2
~ are equal (Eqs. 25b,c). This result

is in exact conformity with Eqs. (14) of Ref. 2 in which Launder et al have

shown that in any simpler pressure—strain hypothesis there is no direct

production of T22 and T33 and therefore they tend to be equal. Thus it can

roughly be stated that the amount of approximation involved in (21) is the same

as obtaining the Reynolds stresses through the six Reynolds stress transport

equat io ns by us ing  a si i :~~ie r p ressure—st ra in  r e la t ion .

7 
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3. Conclusion

The purpose of this  paper has been to do n on s t r a t e  th a t the Boussinesq

eddy viscosity hypothesis and its higher approximations are a direct conse-

quence of the Reynolds stress transport equations. The basic assump tion of

the analysis is that the derivatives of the terms T1~ •i~ i are small in

comparison with the other terms in the rate equation for r ... Because of •

the implicit effects of the convection and diffusion in the second approxi—

rnation, the simple algebraic relation (21) is expected to provide a basis

for the prediction of complex flows.

It is important to mention that the validity of Eq. (13), which rests

on the assumption that the rate of change of T1. be small in comparison with

the other terms is not new either in the paper by Rodi~ or in the present one.

This idea ~ has earlier been used by Donaldson9 who called it as the “super—

equilibrium” limit. As thi application , Donaldson obtained all the Re~:nci~~s

stress terms algebraically for a line vortex.

The au t hors arc grateful to thc’ rev~~ wer ior  b r i n g i n g  this to our

a t t en t i o n .
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